Thermally modulated multilayered graphene oxide for hydrogen storage.

نویسندگان

  • Byung Hoon Kim
  • Won G Hong
  • Han Young Yu
  • Young-Kyu Han
  • Sang Moon Lee
  • Sung Jin Chang
  • Hoi Ri Moon
  • Yongseok Jun
  • Hae Jin Kim
چکیده

We have obtained high pressure H(2) isotherms with respect to the interlayer distance of multilayered graphene oxide (GO) modulated by thermal annealing. The maximum storage capacity is 4.8 (0.5) wt% at 77 K (298 K) and at 9.0 MPa pressure. We found the optimum GO interlayer distance for maximum H(2) uptake at 6.5 Å, similar to the predicted distances from first-principles calculations for graphite materials. Our results reveal that multilayered GO can be a practical material of choice to allow the use of graphene as a hydrogen storage material, provided that only small amounts of O and OH functional groups exist as spacers on GO sheets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen adsorption by g-C3N4 and graphene oxide nanosheets

The adsorption behavior of hydrogen for synthesized graphitic carbon nitride (g-C3N4) and graphene oxide nanosheets was compared. The structure of the prepared g-C3N4 and graphene oxide samples were studied using TEM, FT-IR spectroscopy and surface area analysis. Textural results of the prepared nanosheets show that the surface area, total pore volume, and average internal diameter of g-C3N4 an...

متن کامل

Covalent functionalization of graphene by azobenzene with molecular hydrogen bonds for long-term solar thermal storage

Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of ...

متن کامل

GasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor

A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...

متن کامل

GasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor

A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...

متن کامل

Electrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor

Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2012